Selasa, 16 Mei 2017

Kolofon dan Metadata


Kolofon adalah catatan penulis, umumnya pada akhir naskah atau
terbitan, berisi keterangan mengenai tempat, waktu, dan penyalin
naskah. Kolofon pada buku digital sama dengan metadata.
Metadata merupakan sebuah informasi yang mendeskripsikan
sebuah file. Pada epub, metadata berfungsi memberikan informasi
pada sebuah buku: judul, nama pengarang, tahun penerbitan,
bahasa, ISBN, penerbit, kategori, deskripsi, dll.
Untuk masuk ke jendela metadata, dari sigil  Tools  Metadata
editor, atau tekan tombol F8. Setelah itu silahkan masukkan judul (Title), pengarang (author), serta untuk menambahkan properti
lainnya seperti penerbit, tahun terbit, dll silahkan tekan tombol add
basic, dan kemudian ubah valuenya.

Penulisan IPv6

Tidak seperti IPv4, IPv4 dituliskan dengan bilangan hexadecimal yaitu
0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f. pada IPv6 ini terdapat delapan blok dimana tiap blok
tersebut terdapat empat digit bilangan hexadecimal. Berbeda dengan IPv4 hanya
terdiri dari empat blok saja. selain itu, untuk memisahkan tiap bloknya pada IPv6
digunakan titik dua, tidak titik seperti pada IPv4. Berikut merupakan contoh
penulisan IPv6
2001:0db8:0000:0000:5a55:0302:fef6:0012
Karena pada IPv6 alamat yang digunakan panjang dalam penulisanya, maka telah
dibuat ketentuan tertentu untuk penyederhanaan untuk alamat IPv6, yaitu:
- Angka 0 didepan bisa dihilangkan
- 0000 yang berurutan bisa dihilangkan dan diganti dengan titik dua
Dengan begitu penulisan alamat IPv6 2001:0db8:0000:0000:5a55:0302:fef6:0012
diatas menjadi
2001:db8::5a55:302:fef6:12

Keunggulan IPv6

Jumlah IP Address yang sangat banyak
Seperti yang telah diketahui, pada IPv4 panjang satu alamat IP-nya adalah 32
bit yang berarti dapat menyediakan alamat IP sebanyak 4.294.967.296.mungkin
jika dilihat sepintas jumlah tersebut sudah banyak, tetapi karena implementasi
tertentu dalam penggunaanya pada kenyataanya jumlah IP tersebut masih kurang
jika digunakan untuk membuat jaringan pada seluruh dunia ini. Berbeda dengan
IPv6, IPv6 pada satu alamat IP-nya panjangnya 128 bit atau dengan kata lain
dapat menyediakan alamat IP sebanyak 3.4 x 1038. Jumlah tersebut sangatlah
besar sehingga dapat mengatasi masalah kekurangan IP pada beberapa tahun
mendatang.

Pengalamatan IPv6

IPv6 ini merupakan perkembangan dari IPv4 yang dapat menyediakan lebih
banyak IP address karena IPv6 ini panjangnya adalah 128 bit tidak seperti IPv4
yang panjangnya hanya 32 bit saja. selain itu, masih banyak kelebihan lain dari
IPv6 ini bila dibandingkan dengan IPv4.

Senin, 15 Mei 2017

IPv4 Unicast Addresses

Penugasan terhadap sebuah interface jaringan yang menempatkan subnet
khusus; digunakan untuk komunikasi point to point.Setiap antarmuka jaringan yang
menggunakan protokol TCP/IP harus diidentifikasikan dengan menggunakan
sebuah alamat logis yang unik, yang disebut dengan alamat unicast (unicast
address).Alamat unicast disebut sebagai alamat logis karena alamat ini
merupakan alamat yang diterapkan pada lapisan jaringan dalam DARPA
Reference.Model dan tidak memiliki relasi yang langsung dengan alamat yang
digunakan pada lapisan antarmuka jaringan dalam DARPA Reference Model.
Sebagai contoh, alamat unicastdapat ditetapkan ke sebuah host dengan
antarmuka jaringan dengan teknologi Ethernet, yang memiliki alamat MAC
sepanjang 48-bit. Alamat unicast inilah yang harusdigunakan oleh semua host
TCP/IP agar dapat saling terhubung. Komponen alamat ini terbagi menjadi dua
jenis, yakni alamat host (host identifier) dan alamat jaringan (network identifier).
Alamat unicast menggunakan kelas A, B, dan C dari kelas-kelas alamat IP yang
telah disebutkan sebelumnya, sehingga ruang alamatnya adalah dari 1.x.y.z
hingga 223.x.y.z. Sebuah alamat unicast dibedakan dengan alamat lainnya
dengan menggunakan skema subnet mask.

IPv4 Address Prefixes

Representasi prefix dari alamat IPv4 adalah menunjukkan banyaknya jumlah
alamat pada IPv4.Unutk menetukan panjang notasi dari alamat prefix, kamu bisa
memulainya dengan cara merubah seluruh variable bit menjadi 0, kemudian
konversi ke notasi decimal, dan tambahka potongan bit yang telah
ditentukan(panjang prefix) diawal pengalamatan. Sebagai contoh misalnya alamat
IPv4 adalah 131.107.0.0/16 memiliki 16 bit yang telah ditentukan (100000011
01101011). Awali pengalamatan dengan 16 bit sebelumnya yang telah ditentukan,
kemudian merubah 16 bit terahir menjadi bit 0, sehingga hasilnya menjadi
1000000111 01101011 00000000 00000000 atau 131.107.0.0. Kemudian tinggal
menambahkan potongan bit yang telah ditentukan (/16) untuk merepresentasikan
alamat prefix dari 131.107.0.0/16.

IPv4 Adress Prefixes

Representasi prefix dari alamat IPv4 adalah menunjukkan banyaknya jumlah
alamat pada IPv4.Unutk menetukan panjang notasi dari alamat prefix, kamu bisa
memulainya dengan cara merubah seluruh variable bit menjadi 0, kemudian
konversi ke notasi decimal, dan tambahka potongan bit yang telah
ditentukan(panjang prefix) diawal pengalamatan. Sebagai contoh misalnya alamat
IPv4 adalah 131.107.0.0/16 memiliki 16 bit yang telah ditentukan (100000011
01101011). Awali pengalamatan dengan 16 bit sebelumnya yang telah ditentukan,
kemudian merubah 16 bit terahir menjadi bit 0, sehingga hasilnya menjadi
1000000111 01101011 00000000 00000000 atau 131.107.0.0. Kemudian tinggal
menambahkan potongan bit yang telah ditentukan (/16) untuk merepresentasikan
alamat prefix dari 131.107.0.0/16.

IPv4 Address Syntax

Sistem pengalamatan pada IPv4 menggunakan notasi biner sebesar 32 bit yang
dibagi atas 4 kelompok (setiap kelompok terdiri dari 8 bit atau oktet) dan tiap
kelompok dipisahkan oleh sebuah tanda titik. IPv4 juga sering disebut sebagai
sistem pengalamatan 4- oktet atau pengalamatan 4-bytes (1byte= 8bit).Untuk
memudahkan pembacaan, penulisan alamat dilakukan dengan angka decimal dan
diberi pemisah menggunakan tanda titik(dot) alamat. Format alamat ini terdiri dari 2 bagian, netid dan hostid. Netid sendiri
menyatakan alamat jaringan sedangkan hosted menyatakan alamat lokal
(host/router). Dari 32 bit ini, tidak boleh semuanya angka 0 atau 1 (0.0.0.0
digunakan untuk jaringan yang tidak dikenal dan 255.255.255.255 digunakan
untuk broadcast). Dalam penerapannya, alamat internet ini diklasifikasikan ke
dalam kelas (A-E).Alasan klasifikasi ini antara lain :
Memudahkan sistem pengelolaan dan pengaturan alamat-alamat.
Memanfaatkan jumlah alamat yang ada secara optimum (tidak ada alamat
yang terlewat).
Memudahkan pengorganisasian jaringan di seluruh dunia dengan
membedakan jaringan tersebut termasuk kategori besar, menengah,atau
kecil.
Membedakan antara alamat untuk jaringan dan alamat untuk host/router
Dengan perkembangan internet dan jaringan akhir akhir ini telah membuat internet
protokol (IP) yang merupakan tulang punggung jaringan berbasis TCP/IP dengan
cepat menjadi ketinggalan zaman, dan alamat IPv4 pun juga akan habis terpakai.

Protocol pengalamatan IP.V4

Dalam jaringan komputer pengalamatan IP merupakan hal yang sangat
penting karena pengalamatan ini merupakan pengidentifikasian suatu komputer
pada jaringan sehingga memiliki identitas yang unik. Dengan adanya IP address
maka dapat diketahui sumber ataupun tujuan dari pengiriman paket. Ipv4
menggunakan notasi biner yang memiliki panjang 32 bit. Pada dasarnya, arsitektur
IPv4 menganut konsep classful addressing, yaitu pembagian ruang alokasi alamat
ke dalam 5 kelas (50% A, 25% B, 12.5% C, 6.25% D,dan 6.25% E). dari kelima kelas disamping, jenis alamat yang sering dipakai adalah alamat kelas
A,B, dan C, sedangkan alamat kelas D biasanya digunakan untuk keperluan
multicasting dan kelas E untuk keperluan Experimental. Pada IPv4 dikenal juga
istilah subnet mask yaitu angka biner 32 bit yang digunakan untuk membedakan
network ID dan host ID.

Keuntungan dan kelemahan P2P

Dalam jaringan P2P, klien menyediakan sumber daya, yang mungkin termasuk
bandwidth, ruang penyimpanan, dan daya komputasi. Sebagai node tiba dan
permintaan pada sistem meningkat, total kapasitas sistem juga meningkat.
Sebaliknya, dalam sebuah arsitektur client-server biasa, klien hanya berbagi tuntutan
mereka dengan sistem, tetapi tidak sumber daya mereka. Dalam hal ini, sebagai klien
lebih bergabung dengan sistem, sumber daya kurang tersedia untuk melayani setiap
klien.
Sifat terdistribusi jaringan P2P juga meningkatkan ketahanan, Dan-dalam sistem P2P
murni-dengan memungkinkan rekan-rekan untuk mencari data tanpa bergantung
pada server indeks terpusat .Dalam kasus terakhir, tidak ada satu titik kegagalan dalam sistem.
Seperti dengan sistem jaringan yang paling, aman dan kode unsigned
memungkinkan akses jarak jauh ke file di komputer korban atau bahkan kompromi
seluruh jaringan. Di masa lalu ini telah terjadi misalnya untuk jaringan FastTrack
ketika anti P2P perusahaan yang dikelola untuk memperkenalkan potongan palsu ke
download dan file didownload (kebanyakan file MP3) yang dapat digunakan kode
berbahaya setelah atau bahkan yang terkandung. Akibatnya, jaringan P2P hari ini
telah melihat peningkatan besar keamanan mereka dan mekanisme file verifikasi.
Modern hashing, chunk verifikasi dan metode enkripsi yang berbeda telah membuat
jaringan yang paling resisten terhadap hampir semua jenis serangan, bahkan ketika
bagian utama dari jaringan masing-masing telah digantikan oleh host palsu atau
berfungsi.
penyedia layanan Internet (ISP) telah dikenal untuk mencekik trafik P2P file-sharing
karena penggunaan bandwidth tinggi Dibandingkan dengan browsing Web, e-mail
atau banyak kegunaan lain dari internet, dimana data hanya ditransfer dengan
interval pendek dan jumlah relatif kecil, P2P file-sharing sering terdiri dari
penggunaan bandwidth yang relatif berat karena transfer file berlangsung dan
kawanan / koordinasi jaringan paket. Sebagai reaksi terhadap bandwidth throttling ini
beberapa aplikasi P2P mulai kebingungan menerapkan protokol, seperti enkripsi
protokol BitTorrent. Teknik untuk mencapai "kebingungan protokol" melibatkan
menghapus properti dinyatakan mudah diidentifikasi dari protokol, seperti urutan byte
deterministik dan ukuran paket, dengan membuat data tampak seolah-olah itu acak .
Sebuah solusi untuk ini disebut P2P caching, dimana toko-toko ISP bagian dari file
yang paling diakses oleh klien P2P untuk menyelamatkan akses ke Internet.

Pengertian Peer-to-peer (P2P)

Peer-to-peer (P2P) komputer atau jaringan adalah arsitektur aplikasi
terdistribusi yang partisi tugas atau beban kerja antara rekan-rekan. Peer sama-sama
istimewa, peserta equipotent dalam aplikasi. Mereka dikatakan membentuk jaringan
peer-to-peer node.
Peer membuat sebagian dari sumber daya mereka, seperti kekuatan
pemrosesan, penyimpanan disk atau bandwidth jaringan, langsung tersedia untuk
peserta jaringan lain, tanpa memerlukan koordinasi pemerintah pusat dengan server
atau host yang stabil. Peer keduanya pemasok dan konsumen sumber daya, berbeda
dengan model client-server tradisional di mana hanya server pasokan, dan klien
konsumsi.
Struktur aplikasi peer-to-peer dipopulerkan oleh sistem file sharing seperti
Napster. Paradigma komputasi peer-to-peer telah mengilhami struktur baru dan
filsafat di daerah lain interaksi manusia. Dalam konteks sosial, peer-to-peer sebagai
meme yang mengacu pada jejaring sosial egaliter yang saat ini muncul di seluruh
masyarakat, dimungkinkan oleh teknologi internet pada umumnya.

Pengelokasian IP Adress

Bagian ini memegang peranan yang sangat penting karena meliputi
perencanaan jumlah network yang akan dibuat dan alokasi IP address untuk tiap
network. Kita harus membuat subnetting yang tepat untuk keseluruhan jaringan
dengan mempertimbangkan kemungkinan perkembangan jaringan di masa yang
akan datang. Sebagai contoh, sebuah kantor memasang jaringan internet via V-SAT
mendapat alokasi IP addres dari INTERNIC (http://www.internic.net) untuk kelas B
yaitu 192.168.xxx.xxx. Jika diimplementasikan dalam suatu jaringan saja (flat), maka
dengan IP Address ini kita hanya dapat membuat satu network dengan kapasitas
lebih dari 65.000 host. Karena letak fisik jaringan tersebar (dalam beberapa
departemen dan laboratorium) dan tingkat kongesti yang akan sangat tinggi, tidak
mungkin menghubungkan seluruh komputer dalam kantor tersebut hanya dengan
menggunakan satu buah jaringan saja (flat). Maka dilakukan pembagian jaringan
sesuai letak fisiknya. Pembagian ini tidak hanya pada level fisik (media) saja, namun
juga pada level logik (network layer), yakni pada tingkat IP address. Pembagian pada
level network membutuhkan segmentasi pada IP Address yang akan digunakan.
Untuk itu, dilakukan proses pendelegasian IP Address kepada masing-masing
jurusan, laboratorium dan lembaga lain yang memiliki LAN dan akan diintegrasikan
dalam suatu jaringan kampus yang besar. Misalkan dilakukan pembagian IP kelas B
sebagai berikut :
 IP address 192.168.1.xxx dialokasikan untuk cadangan
 IP address 192.168.2.xxx dialokasikan untuk departemen A
 IP address 192.168.3.xxx dialokasikan untuk departemen B
 Ip address 192.168.4.xxx dialokasikan untuk unit X
 dsb.
Pembagian ini didasari oleh jumlah komputer yang terdapat pada suatu
jurusan dan prediksi peningkatan populasinya untuk beberapa tahun kemudian.Hal ini
dilakukan semata-mata karena IP Address bersifat terbatas, sehingga
pemanfaatannya harus diusahakan seefisien mungkin.
Jika seorang administrator di salah satu departemen mendapat alokasi IP
addres 192.168.48.xxx, maka alokasi ini akan setara dengan sebuah IP address
kelas C karena dengan IP ini kita hanya dapat membentuk satu jaringan berkapasitas
256 host yakni dari 192.168.9.0 sampai 192.168.9.255.
Dalam pembagian ini, seorang network administrator di suatu lembaga
mendapat alokasi IP Address 192.168.9.xxx.Alokasi ini setara dengan satu buah
kelas C karena sama-sama memiliki kapasitas 256 IP Address, yakni dari
192.168.9.0 sampai dengan 192.168.9.255.Misalkan dalam melakukan instalasi
jaringan, ia dihadapkan pada permasalahan-permasalahan sebagai berikut :
 Dibutuhkan kira-kira 7 buah LAN.
 Setiap LAN memiliki kurang dari 30 komputer.
Berdasarkan fakta tersebut, ia membagi 256 buah IP address itu menjadi 8
segmen. Karena pembagian ini berbasis bilangan biner, pembagian hanya dapat
dilakukan untuk kelipatan pangkat 2, yakni dibagi 2, dibagi 4, 8, 16, 32 dst. Jika kita
tinjau secara biner, maka kita mendapatkan :
Jumlah bit host dari subnet 192.168.9.xxx adalah 8 bit (segmen terakhir). Jika
hanya akan diimplementasikan menjadi satu jaringan, maka jaringan tersebut dapat
menampung sekitar 256 host.
Jika ia ingin membagi menjadi 2 segmen, maka bit pertama dari 8 bit segmen
terakhir IP Address di tutup (mask) menjadi bit network, sehingga masking
keseluruhan menjadi 24 + 1 = 25 bit. Bit untuk host menjadi 7 bit. Ia memperoleh 2
buah sub network, dengan kapasitas masing-masing subnet 128 host. Subnet
pertama akan menggunakan IP Address dari 192.168.9.(0-127), sedangkan subnet
kedua akan menggunakan IP Address 192.168.9.(128-255).

Metode perencanaan LAN

Sekarang kita akan membahas bagaimana merencanakan suatu LAN yang
baik. Tujuan utamanya untuk merancang LAN yang memenuhi kebutuhan pengguna
saat ini dan dapat dikembangkan di masa yang akan datang sejalan dengan
peningkatan kebutuhan jaringan yang lebih besar.
Desain sebuah LAN meliputi perencanaan secara fisik dan logic .
Perencanaan fisik meliputi media yang digunakan bersama dan infrastruktur LAN
yakni pengkabelan sebagai jalur fisik komunikasi setiap devais jaringan. Infrastruktur
yang dirancang dengan baik cukup fleksibel untuk memenuhi kebutuhan sekarang
dan masa datang.
Metode perencanaan LAN meliputi :
 Seorang administrator network yang bertanggung jawab terhadap jaringan.
 Pengalokasian IP address dengan subnetting.
 Peta letak komputer dari LAN dan topologi yang hendak kita gunakan.
 Persiapan fisik yang meliputi pengkabelan dan peralatan lainnya.
Di antara hal-hal yang perlu diperhatikan dalam perancangan LAN adalah
lokasi fisik itu sendiri. Peta atau cetak biru bangunan-bangunan yang akan
dihubungkan serta informasi jalur kabel (conduit) yang ada dan menghubungkan
bangunan-bangunan tersebut sangat diperlukan. Jika peta seperti ini tidak ada maka
perlu digambarkan peta dengan cara merunut kabel-kabel yang ada. Secara umum
dapat diasumsikan bahwa pengkabelan yang menghubungkan bangunan-bangunan
atau yang melewati tempat terbuka harus terdapat di dalam conduit. Seorang
manajer jaringan harus menghubungi manajer bangunan untuk mengetahui aturan-
aturan pengkabelan ini sebab manajer bangunan yang mengetahui dan bertanggung
jawab atas bangunan tersebut. Pada setiap lokasi (yang dapat terdiri dari beberapa
bangunan) harus ditunjuk seorang manajer jaringan. Manajer jaringan harus
mengetahui semua konfigurasi jaringan dan pengkabelan pada lokasi yang menjadi
tanggung jawabnya. Pada awalnya tugas ini hanya memakan waktu sedikit. Namun
sejalan dengan perkembangan jaringan menjadi lebih kompleks, tugas ini berubah
menjadi tugas yang berat. Jadi sebaiknya dipilih orang yang betul-betul berminat dan
mau terlibat dalam perkembangan jaringan.

Subnetting

Untuk beberapa alasan yang menyangkut efisiensi IP Address, mengatasi
masalah topologi network dan organisasi, network administrator biasanya melakukan
subnetting. Esensi dari subnetting adalah “memindahkan” garis pemisah antara
bagian network dan bagian host dari suatu IP Address.Beberapa bit dari bagian host
dialokasikan menjadi bit tambahan pada bagian network. Address satu network
menurut struktur baku dipecah menjadi beberapa subnetwork. Cara ini menciptakan
sejumlah network tambahan, tetapi mengurangi jumlah maksimum host yang ada
dalam tiap network tersebut.
Subnetting juga dilakukan untuk mengatasi perbedaan hardware dan media
fisik yang digunakan dalam suatu network. Router IP dapat mengintegrasikan
berbagai network dengan media fisik yang berbeda hanya jika setiap network
memiliki address network yang unik. Selain itu, dengan subnetting, seorang Network
Administrator dapat mendelegasikan pengaturan host address seluruh departemen
dari suatu perusahaan besar kepada setiap departemen, untuk memudahkannya
dalam mengatur keseluruhan network.
Suatu subnet didefinisikan dengan mengimplementasikan masking bit (subnet
mask ) kepada IP Address. Struktur subnet mask sama dengan struktur IP Address,
yakni terdiri dari 32 bit yang dibagi atas 4 segmen. Bit-bit dari IP Address yang
“ditutupi” (masking) oleh bit-bit subnet mask yang aktif dan bersesuaian akan
diinterpretasikan sebagai network bit. Bit 1 pada subnet mask berarti mengaktifkan
masking ( on ), sedangkan bit 0 tidak aktif ( off ). Sebagai contoh kasus, mari kita
ambil satu IP Address kelas A dengan nomor 44.132.1.20.

Aturan dasar pemilihan Network ID dan Host ID

Berikut adalah aturan-aturan dasar dalam menentukan network ID dan host ID
yang digunakan :
 Network ID tidak boleh sama dengan 127
Network ID 127 secara default digunakan sebagai alamat loopback yakni IP
address yang digunakan oleh suatu komputer untuk menunjuk dirinya sendiri.
 Network ID dan host ID tidak boleh sama dengan 255
Network ID atau host ID 255 akan diartikan sebagai alamat broadcast. ID ini
merupakan alamat yang mewakili seluruh jaringan.
 Network ID dan host ID tidak boleh sama dengan 0
IP address dengan host ID 0 diartikan sebagai alamat network. Alamat network
digunakan untuk menunjuk suatu jaringn bukan suatu host.
 Host ID harus unik dalam suatu network.
Dalam suatu network tidak boleh ada dua host yang memiliki host ID yang sama.